
Mark schemes

Q1. (a) non-metallic element 1 (b) compound (c) noble gases 1 (d) the boiling points increase down the group 1 (e) atoms 1 (f) XO_2 (g) $(2.8)^2 \times 6$ 1 = 47.041 = 47 (nm²)allow an answer correct to 2 significant figures resulting from an incorrect attempt at the calculation 1 the surface area to volume ratio of the fine particle is 10 times greater (h) [10] Q2. (a) all seven points plotted correctly allow a tolerance of $\pm \frac{1}{2}$ small square allow 1 mark for five or six points plotted correctly 2 line of best fit 1 0.0038 and 0.0014 (b) 1 0.0038 - 0.0014 105 - 20 allow correct use of incorrectly

ignore throughout for through ignore current / electricity for charge

1

(b) **Level 2:** Some logically linked reasons are given. There may also be a simple judgement.

3–4

Level 1: Relevant points are made. They are not logically linked.

1–2

No relevant content

O

Indicative content

- wood is the least dense so lightest to use
- aluminium is the most dense so will make the racket too heavy
- carbon nanotube is the strongest so least likely to break
- wood / aluminium are too weak so the racket will break more easily
- carbon nanotube is the stiffest so least likely to bend out of shape
- wood / aluminium are not very stiff so could bend out of shape
- justified conclusion

(c)

an answer of 4.0 x 10⁴ (nm²) scores **3** marks an answer of 40344 (nm²) scores **2** marks

(822 =) 6724 (nm²)

1

(6 x 6724 =) 40344 (nm²)

allow 40344 (nm²) correctly rounded to any number of significant figures allow correct calculation using incorrectly calculated value of area of one face from step1

1

 $= 4.0 \times 10^4 \text{ (nm}^2\text{)}$

allow 4.0344 x 10⁴ (nm²) correctly rounded to 1 or more significant figures allow a correctly calculated and rounded conversion to standard form of an incorrect calculation of surface area

1

(d)

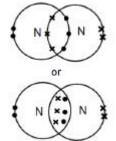
allow converse statements about fine particles

1

any	one	from	ı:
-----	-----	------	----

- less can be used (for the same effect)
 ignore nanoparticles are smaller
- greater surface area (to volume ratio)

[10]


Q4.

(a) six electrons in the overlap

allow dots, crosses or e⁽⁻⁾ for electrons

1

2 non-bonding electrons on each nitrogen atom **2** marks for an answer of:

(b) weak forces

1

between molecules

or

intermolecular

do not allow references to covalent bonding between molecules

1

(which) need little energy to overcome

1

(c) each (carbon) atom forms three covalent bonds

1

forming layers (of hexagonal rings)

1

forming layers (or nexagonal rings)

_

(soft) (because) layers can slide over each other

1

(conducts electricity)

(because of) delocalised electrons

1

(d) molecules are spherical

1

	(so molecules) will roll	1	
(e)	surface area (= $20 \times 20 \times 6$) = 2400 (nm ²)	1	
	volume (= 20 ³) = 8000 (nm ³)	1	
	ratio = 0.3 (nm ³): 1 (nm ³) ratio = 0.3 (nm ³): 1 (nm ³) or 1 (nm ³): 3.33 (nm ³)		
(f)	(nanoparticles) have a larger surface area to volume ratio	1	
	so less can be used for the same effect	1 1 [16]	
05			
Q5. (a)	any one from:		
	 there was a flame energy was given out a new substance was formed the magnesium turned into a (white) powder answers must be from the figure 	1	
(b)	Magnesium oxide	1	
(c)	The reaction has a high activation energy	1	
(d)	9	1	
(e)	They have a high surface area to volume ratio	1	
(f)	any one from:		
	Better coverageMore protection from the Sun's ultraviolet rays	1	
(g)	any one from:		
	Potential cell damage to the bodyHarmful effects on the environment	1	

indication of $\overline{1.6} = 0.625$ (h) use of indices $10^{-9} - 10^{-6} = 10^{3}$ Both steps must be seen to score first mark 1 $0.625 \times 1000 = 625$ (times bigger) 1 [9] **Q6.** (a) (i) (mass number = 16) because there are 8 protons and 8 neutrons (in the nucleus) accept mass number is total number of protons and neutrons for 1 mark 2 (ii) same number of protons or both have 6 protons accept same atomic number 1 ¹²C has 6 neutrons 1 ¹⁴C has 8 neutrons 1 accept different number of neutrons for 1 mark numbers, if given, must be correct incorrect reference to electrons = max 2 marks (b) (i) 2 bonding pairs 1 additional unbonded electrons negates this mark 4 unbonded electrons around oxygen accept dot, cross or e or - or any combination (ii) covalent 1 (iii) any **one** from: no delocalised / free electrons ignore mobile electrons no overall electric charge accept no charge (carriers) no ions 1 do **not** accept any implications of the presence of ions (c) (i) larger accept the size of a few hundred atoms

accept atoms are smaller (than nanoparticles) allow up to 1000 atoms)

1

(ii) (nanoparticles have) large(r) surface area

[11]